Plant Genetics and Development

<table>
<thead>
<tr>
<th>Identification number</th>
<th>Workload</th>
<th>Credit points</th>
<th>Term of studying</th>
<th>Frequency of occurrence</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-B-SM (PD 1)</td>
<td>360 h</td>
<td>12 CP</td>
<td>1st or 2nd term of studying</td>
<td>Summer term, 1st half</td>
<td>7 weeks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of lessons</th>
<th>Contact times</th>
<th>Self-study times</th>
<th>Intended group size</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Lectures</td>
<td>9 h</td>
<td>18 h</td>
<td>max. 3</td>
</tr>
<tr>
<td>b) Practical/Lab</td>
<td>166 h</td>
<td>140 h</td>
<td>max. 1</td>
</tr>
<tr>
<td>c) Seminar</td>
<td>3 h</td>
<td>24 h</td>
<td>max. 1</td>
</tr>
</tbody>
</table>

2 Aims of the module and acquired skills

Students who successfully completed this module …

- have acquired detailed knowledge on principles and methods used in plant genetics and plant molecular biology as well as about approaches to study plant development.
- have obtained an understanding of the principles of evo-devo as the basis of exploring the evolution of traits such as flowering, flower and fruit development, axillary meristem formation and stamen maturation.
- are able to independently plan, carry out and evaluate small scientific projects related to the topics of the module.
- have learned how to present research results in oral and written form and to critically discuss scientific publications related to the topic of the module on a professional level.
- are able to transfer skills acquired in this module to other fields of biology.

3 Contents of the module

- Genetic and phenotypic characterization of mutants
- Expression studies (RT-PCR, in-situ hybridization)
- Linkage mapping
- Generation and characterization of transgenic plants
- Epigenetics
- Long non-coding RNAs
- Micro RNAs
- Mikroscopy

Explanatory note: The above list comprises state-of-the-art genetic and molecular techniques that are commonly used in the field of plant genetics and plant molecular biology. Every student participating in this module will be confronted with a large subset of it. The exact content, however, will depend on the 6-week research project the student will work on (lab of Jun.-Prof. Dr. M. Albani: genetics, genomics, mapping by sequencing, plant development and evolution; lab of Prof. Dr. K. Theres: genetics, genomics, plant development; Dr. Angela Hay: genetics, plant development and evolution; Dr. Ivan Acosta: genetics, developmental biology, microscopy).

4 Teaching/Learning methods

- Lectures; Practical/Lab (Project work); Seminar; Guidance to independent research; Training on presentation techniques in oral and written form
Requirements for participation
Enrollment in the Master’s degree course “Biological Sciences”

Type of module examinations
The final examination consists of three parts: 30 min oral examination about topics of the lectures and the practical/lab part (50 % of the total module mark), oral presentation (25 % of the total module mark) and seminar paper (25 % of the total module mark)

Requisites for the allocation of credits
Regular and active participation; Each examination part at least “sufficient” (see appendix of the examination regulations for details)

Compatibility with other Curricula
None

Significance of the module mark for the overall grade
15 % of the overall grade (see also appendix of the examination regulations)

Module coordinator
Prof. Dr. Maria Albani, phone 5062-380, e-mail: malbani@uni-koeln.de, albani@mpipz.mpg.de

Additional information
Subject module of the Master’s degree course “Biological Sciences”,
Focus of research: (P) Molecular Plant Sciences; (D) Developmental Biology

Participating faculty: Dr. I. Acosta, Prof. Dr. M. Albani, Dr. A. Hay, Prof. Dr. K. Theres

Location: The module will be held at the MPI for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln

Literature:

General time schedule: Week 1-6 (Mon.-Fri.): Lectures, practical/lab and preparation for the seminar talk (topic and date will be arranged individually) as well as writing seminar paper; Week 7 (Mon.-Fri): Preparation for the oral examination

Note: The module contains hand-on laboratory work conducted individually and is taught in research laboratories. The module does not contain computer-based practicals/research as a main component.

Introduction to the module: March 28, 2018 at 2:00 p.m., MPI for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Seminar room 2

Oral examination: May 17, 2019, second/supplementary examination July 26, 2019; the latter date may vary if students and module coordinator agree. More details will be given at the beginning of the module.