Module Name

Neurobiochemistry

Type of Module

Advanced Module

Module Code

Neurobiochemistry

Identification Number MN-B-SM (N 3)		Workload 360 h	Credit Points 12 CP	Term	Offered Every Summer term		Start summer term only		Duration 7 weeks
				2 nd term of studying					
1	Cour	se Types		Contact Time	•	Private Study		Planned Group Size*	
	a) Lectures		16 h		80 h		max. 9		
	b) Pr	actical/Lab	96 h		72 h		max. 9		
	c) Se	minar		16 h		80 h		max. 9	

2 Module Objectives and Skills to be Acquired

Students who successfully completed this module

- have acquired detailed knowledge about the structure-function relations of ligand-gated ion channels as well as post synaptic proteins and their function within neuronal cells.
- are able to isolate synaptic proteins from recombinant sources.
- can characterize protein interactions between membrane receptors and synaptic proteins on a biochemical level using isothermal titration calorimetry and size exclusion chromatography.
- are able to apply the principle of immunodetection to microscopic samples as well as Western blot-based detection techniques.
- have acquired sterile working practice, are able to express synaptic proteins in cultured mammalian cells and analyze their subcellular distribution using fluorescence microscopy.
- are able to express Adeno-associated viruses (AAV) in a cultured mammalian cell line and enrich AAVs suitable for *in vitro* experiments.
- have prepared hippocampal neuron cultures and quantified synaptic structures using semiautomated image processing.
- can independently carry out small scientific projects related to the topic of the module.
- have the ability to process, quantify and evaluate their experimental results.
- have learned how to present research results in oral and written form and to critically discuss scientific publications related to the topic of the module on a professional level.
- are able to transfer skills acquired in this module to other fields of biochemistry.

3 Module Content

- Structure and function of neurons
- Ligand-gated ion channels, post-synaptic proteins, their structures and molecular interaction
- Neuronal receptors in health and disease
- Methods to visualize cellular structures and protein interactions (in vitro and in vivo)
- Expression of synaptic proteins in cultured mammalian cells and immunostaining analysis
- Preparation of hippocampal neurons from mouse brain
- Fluorescence microscopy and image analysis
- Model organisms: vertebrates Mus musculus, prokaryotes E. coli

4	Teaching Methods							
	Lectures; Practical/Lab (Project work); Seminar; Guidance to independent research; Training on presentation techniques in oral and written form							
5	Prerequisites (for the Module)							
	Enrollment in the Master's degree course "Biological Sciences" or in the Master's degree course "Biochemistry"							
	Additional academic requirements							
	Previous attendance of the lecture module "Neurobiology: Genes, Circuits, and Behavior (N)".							
6	Type of Examination							
	The final examination consists of two parts: written examination on topics of lectures, seminars and the practical/lab part (1 hour; 50 % of the total module mark), oral presentation (20-30 min; 50 % of the total module mark)							
7	Credits Awarded							
	Regular and active participation Each examination part at least "sufficient" (see appendix of the examination regulations for details)							
8	Compatibility with other Curricula							
	Biochemical subject module in the Master's degree course "Biochemistry"							
9	Proportion of Final Grade							
	In the Master's degree course "Biological Sciences": 15 % of the overall grade (see also appendix of the examination regulations							
10	Module Coordinator							
	Prof. Dr. Günter Schwarz, phone 470-6440, e-mail: gschwarz@uni-koeln.de							
ı								

11 Further Information

Subject module of the Master's degree course "Biological Sciences", **Specialization:** (N) Neurobiology: Genes, Circuits, and Behavior

Participating faculty: Prof. Dr. M. Bergami, Prof. Dr. G. Schwarz Dr. N. Kononenko, Dr. F. Liebsch, Dr. F. Neuser

Literature:

- Kandel, E.R., Schwartz, J.H., Jessell, T. (2014) Principles of Neural Science. 5th edition, McGraw-Hill. Chapters 21, 22, 32.
- Further original publications will be handed out at the introduction to the module

General time schedule: Week 1-5 (Mon.-Fri.): Lectures, practical/lab, preparation for the seminar talk (topic and date will be arranged individually); Week 6 (Mon.-Fri.): Writing seminar paper; Week 7 (Mon.-Fri.): Preparation for the written examination

Note: The module contains hand-on laboratory work conducted by small groups of students and individually and is taught in course rooms and research laboratories. The module does not contain computer-based practicals/research as a main component.

Introduction to the module: April 1, 2022 at 2:00 9.m., online (further information/link will be sent to your Smail-Account)

Written examination: May 20, 2022, second/supplementary examination August 05, 2022; the latter date may vary if students and module coordinator agree. More details will be given at the beginning of the module.

^{* 3} students from the Master's degree course "Biological Sciences" and 5 students from the Master's degree course "Biochemistry".