Module Name

Computational Neuroscience

Type of Module

Advanced Module

Module Code

Computational Neuroscience

Advanced Module					Computational Neuroscience					
Identification Number		Workload	Credit Points	Term	Term		Offered Every			Duration
MN-B-SM (N 6)		360 h	12 CP	2 nd te	-	Summer tern		summer term only		7 weeks
1	Cour	urse Types		Conta	Contact Time		Private Study		Planned Group Size*	
	a) Lectures		30 h	30 h		60 h		max. 10		
	b) Practical/Lab			100 h	100 h		130 h		max. 10	
	c) Seminar			12 h	12 h		28 h		max. 10	

2 Module Objectives and Skills to be Acquired

Students who successfully completed this module

- have acquired a general overview over the field of computational neuroscience.
- can use Python for scientific programming, data analysis, and computational modeling as well as for visualization of data and analysis of results.
- have gained an understanding of how electrical properties of neurons can be represented mathematically.
- can describe aspects of neural network connectivity using graph theoretical concepts.
- can perform basic spiking neural network simulations with NEST.
- are able to extract and condense information from the neuroscientific literature.
- have improved their overall analytical skills.
- have learned how to present research results and to critically discuss scientific publications related to the topic of the module on a professional level.
- are able to transfer skills acquired in this module to other scientific fields.

3 Module Content

- · Fundamentals and selected topics of computational neuroscience
- Scientific programming with Python
- Analysis of electrophysiological data with Python
- Spike train statistics and stochastic point processes
- · Neural coding and plasticity
- Mathematical descriptions of neurons and networks
- Ordinary differential equations
- Graph theory of neural networks
- Phase oscillator models of neural interactions
- Introduction to the neural network simulation tool NEST

4	Teaching Methods								
	Lectures; Programming/mathematical exercises; Seminar; Guidance to independent research; training on presentation techniques in oral and written form								
5	Prerequisites (for the Module)								
	Enrollment in the Master's degree course "Biological Sciences", "Experimental and Clinical Neuroscience", "Physics", or "Mathematics"								
	Additional academic requirements								
	Previous attendance of the lecture module "Neurobiology: Genes, Circuits, and Behavior (N)". Some programming experience in any language is highly recommended.								
6	Type of Examination								
	The final examination consists of two parts: written examination on topics of lectures, seminars and practical/lab part (1 hour; 50% of the total module mark), oral presentation (20-30 min; 50% of the module mark)								
7	Credits Awarded								
	Regular and active participation; Each examination part at least "sufficient" (see appendix of the examination regulations for details)								
8	Compatibility with other Curricula*								
	Elective module in the Master's degree course "Experimental and Clinical Neurosciences"								
9	Proportion of Final Grade								
	In the Master's degree course "Biological Sciences": 15 % of the overall grade (see also appendix of the examination regulations)								
10	Module Coordinator								
	Prof. Dr. Martin Nawrot, phone 470-7307, e-mail: mnawrot@uni-koeln.de								
11	Further Information								
	Subject module of the Master's degree course "Biological Sciences", Specialization: (N) Neurobiology: Genes, Circuits, and Behavior								
	Participating faculty: Prof. Dr. S. van Albada, Prof. Dr. S. Daun, Prof. Dr. M. Nawrot, Dr. V. Rostami								
	Literature: Information about textbooks and other reading material will be given on the ILIAS representation of the course (https://www.ilias.uni-koeln.de/ilias/goto_uk_cat_2815610.html)								
	General time schedule: Week 1 (MonThu.): Seminar, lectures and practical sessions; Week 2-6 (MonThu.): Lectures and practical sessions; Week 1-6 (Fri.): Self-study time; Week 7 (MonThu.): Preparation for the written examination								
	Note: The module contains computer-based practical sessions as a main component.								
	Introduction to the module: May 17, 2022 at 15:00 p.m. online (further information/link will be sent to your Smail-Account); for preparation to the module before this introduction see ILIAS link under literature.								
	Oral or written examination: July 15, 2022, second/supplementary examination August 26, 2022; the latter date may vary if students and module coordinator agree. More details will be given at the beginning of the module.								

^{*8} students from the Master's degree course "Biological Sciences" and 2 students from the Master's degree course "Experimental and Clinical Neurosciences"